K fields, compactons and thick branes

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2009 J. Phys. A: Math. Theor. 42159801
(http://iopscience.iop.org/1751-8121/42/15/159801)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.153
The article was downloaded on 03/06/2010 at 07:36

Please note that terms and conditions apply.

Corrigendum

K fields, compactons and thick branes

C Adam, N Grandi, J Sánchez-Guillén and A Wereszczyński 2008 J. Phys. A: Math. Theor. 41212004

In this paper, the stability of the compact brane was briefly discussed, and for this purpose the basis functions for linear perturbations, originally described in section 4.4 of [1], were quoted in equation (17) of this paper. These basis functions are, however, incorrect, due to an error in [1] (see the corrigendum of that reference for correct discussion). The correct basis functions, which should replace equation (17) in this paper, are given as follows. The space of basis functions may be decomposed into an even and an odd subspace, and the correct basis functions are

$$
\eta_{n}(y)= \begin{cases}0 & y \leqslant-\frac{\pi}{2} \\ \cos (2 n+1) y & -\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2} \\ 0 & y \geqslant \frac{\pi}{2}\end{cases}
$$

(here $n=0, \ldots, \infty$), for the even subspace, and

$$
\zeta_{m}(y)= \begin{cases}0 & y \leqslant-\frac{\pi}{2} \\ \sin 2 m y & -\frac{\pi}{2} \leqslant y \leqslant \frac{\pi}{2} \\ 0 & y \geqslant \frac{\pi}{2}\end{cases}
$$

(here $m=1, \ldots, \infty$), for the odd subspace. All further results and conclusions of this paper are, however, not affected by this incorrect quotation and remain correct.

References

[1] Adam C, Sanchez-Guillen J and Wereszczynski A 2007 J. Phys. A: Math. Theor. 4013625
Adam C, Sanchez-Guillen J and Wereszczynski A 2009 J. Phys. A: Math. Theor. 42089801 (corrigendum)

